Back to Search
Start Over
Properties of Zirconia, Lithium Disilicate Glass Ceramics, and VITA ENAMIC® Hybrid Ceramic Dental Materials Following Ultra-Short Femtosecond (30 fs) Laser Irradiation
- Source :
- Applied Sciences, Vol 14, Iss 17, p 7641 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- This study investigated the dose-dependent changes in the chemical composition of three dental ceramic materials—zirconia, lithium disilicate (LD), and VITA ENAMIC® hybrid composite (VITA En)—following irradiation with an ultra-short femtosecond (fs) laser (800 nm, 30 fs, 1 kHz) in an ambient air environment using average laser power (76 mW) and scanning speeds (50, 100, and 200 mm/s), simulating dental treatment processes. The chemical composition of the ablated regions was analyzed using energy dispersive spectroscopy. All irradiated samples showed increased carbon content (by up to 42%) and reduced oxygen (by up to 33%). The observed increase in C content is likely attributed to a combination of surface reactions, adsorption of carbon from the ambient environment, and carbon deposition from the laser-induced plasma, all facilitated by the high-energy conditions created by fs-laser pulses. Scanning electron microscopy revealed ablation with progressive controlled melting and recrystallization, with an absence of pile-up features typically associated with significant thermal damage. These findings demonstrate that ultra-short fs-laser irradiation induces highly controlled, dose-dependent changes in the chemical composition and surface morphology of dental ceramic materials.
Details
- Language :
- English
- ISSN :
- 14177641, 20763417, and 08473099
- Volume :
- 14
- Issue :
- 17
- Database :
- Directory of Open Access Journals
- Journal :
- Applied Sciences
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b97f0aa3ca084730991a2a8bd7bef40e
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/app14177641