Back to Search Start Over

On the Selection of Non-Invasive Methods Based on Speech Analysis Oriented to Automatic Alzheimer Disease Diagnosis

Authors :
Unai Martinez de Lizardui
Nora Barroso
Miriam Ecay-Torres
Pablo Martinez-Lage
Marcos Faundez-Zanuy
Aitzol Ezeiza
Jordi Solé-Casals
Harkaitz Egiraun
Carlos Manuel Travieso
Jesus-Bernardino Alonso
Karmele López-de-Ipiña
Source :
Sensors, Vol 13, Iss 5, Pp 6730-6745 (2013)
Publication Year :
2013
Publisher :
MDPI AG, 2013.

Abstract

The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.

Details

Language :
English
ISSN :
14248220
Volume :
13
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.b9f08122347d4612818a9a4f633a7ff6
Document Type :
article
Full Text :
https://doi.org/10.3390/s130506730