Back to Search Start Over

Preparation and in vitro evaluation of hot-melt extruded pectin-based pellets containing ketoprofen for colon targeting

Authors :
Sagar Narala
Dinesh Nyavanandi
Preethi Mandati
Ahmed Adel Ali Youssef
Abdullah Alzahrani
Praveen Kolimi
Feng Zhang
Michael Repka
Source :
International Journal of Pharmaceutics: X, Vol 5, Iss , Pp 100156- (2023)
Publication Year :
2023
Publisher :
Elsevier, 2023.

Abstract

This work developed high drug-load pellets for colon targeting in minimal steps by coupling hot-melt extrusion (HME) with a die-surface cutting pelletizer, offering a potential continuous pellet manufacturing process. Ketoprofen (KTP) was selected as a model drug for this study due to its thermal stability and severe upper gastrointestinal side effects. Low and high methoxyl grade pectins were the enzyme-triggered release matrix, and hydroxypropyl methylcellulose (HME 4 M/HME 100LV) was used as a premature release-retarding agent. The powder X-ray diffraction technique and the differential scanning calorimetry results revealed that KTP exists in the solid-solution state within the polymeric matrix after the HME step. The scanning electron micrographs of the fabricated pellets showed a smooth surface without any cracks. The lead formulation showed the lowest premature drug release (∼13%) with an extended KTP release profile over a 24 h period in the presence and absence of the release-triggering enzyme. The lead formulation was stable for 3 months at accelerated stability conditions (40 °C/75 ± 5% RH) concerning drug content, in vitro release, and thermal characteristics. In summary, coupling HME and pelletization processes could be a promising technology for developing colon-targeted drug delivery systems.

Details

Language :
English
ISSN :
25901567
Volume :
5
Issue :
100156-
Database :
Directory of Open Access Journals
Journal :
International Journal of Pharmaceutics: X
Publication Type :
Academic Journal
Accession number :
edsdoj.ba887c0e9554274982da1e0682ec6d7
Document Type :
article
Full Text :
https://doi.org/10.1016/j.ijpx.2022.100156