Sorry, I don't understand your search. ×
Back to Search Start Over

Natural high-porous diatomaceous-earth based self-floating aerogel for efficient solar steam power generation

Authors :
Aitang Zhang
Kai Wang
Md Julker Nine
Mengyu Cao
Hanwen Zong
Zhiqiang Liu
Hanwen Guo
Jingquan Liu
Dusan Losic
Source :
Green Energy & Environment, Vol 9, Iss 2, Pp 378-389 (2024)
Publication Year :
2024
Publisher :
KeAi Communications Co., Ltd., 2024.

Abstract

The application of solar steam generation in seawater desalination is an effective way to solve the shortage of fresh water resources. At present, many kinds of photothermal conversion materials have been developed and used as evaporators in seawater desalination. However, some evaporators need additional thermal insulation or water supply devices to achieve efficient photothermal conversion. In addition, their complex, time consuming and no scalable preparation process, high cost of raw materials and poor salt resistance hinder the practical application of these evaporator. Owing to its distinctive nanoporous structure, diatomite as fossilized single-cells algae diatoms is a promising natural silica-based material for seawater desalination. They are taken from sea and that makes true sense to use them in the sea. Herein, we report the first example of synthesis robust three-dimensional (3D) natural-diatomite composite by assembling polyaniline nanoparticles covered diatomite into the polyvinyl alcohol pre-treated melamine foam frameworks and demonstrate its application as new evaporator for seawater desalination. The porous framework does not only improve the sunlight scattering efficiency, but also offer large network of channels for water transportation. The inherent mechanism behind salt desalination process involves the absorption of water molecules on the surface of the internal silica micro-nano pores, and evaporation under the heat induced by the polyaniline absorbed sunlight. Meanwhile, the metal ions are segregated by many available pores and channels to achieve the self-desalting effect. The developed evaporator possesses the superiority of multi-stage pore structure, strong hydrophilicity, low thermal conductivity, excellent light absorption, fast water transportation and salt-resistant crystallization as well as good durability. The evaporation rate without an additional device is found to be 1.689 kg m−2 h−1 under 1-Sun irradiation, and the energy conversion efficiency is as high as 95%. This work creates a platform and develops the prospect of employing green and sustainable natural-diatomite composite evaporator for practical applications of seawater desalination.

Details

Language :
English
ISSN :
24680257
Volume :
9
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Green Energy & Environment
Publication Type :
Academic Journal
Accession number :
edsdoj.bb51f77555e340b1a3683633448d5adb
Document Type :
article
Full Text :
https://doi.org/10.1016/j.gee.2022.08.001