Back to Search Start Over

Detecting paroxysmal coughing from pertussis cases using voice recognition technology.

Authors :
Danny Parker
Joseph Picone
Amir Harati
Shuang Lu
Marion H Jenkyns
Philip M Polgreen
Source :
PLoS ONE, Vol 8, Iss 12, p e82971 (2013)
Publication Year :
2013
Publisher :
Public Library of Science (PLoS), 2013.

Abstract

Pertussis is highly contagious; thus, prompt identification of cases is essential to control outbreaks. Clinicians experienced with the disease can easily identify classic cases, where patients have bursts of rapid coughing followed by gasps, and a characteristic whooping sound. However, many clinicians have never seen a case, and thus may miss initial cases during an outbreak. The purpose of this project was to use voice-recognition software to distinguish pertussis coughs from croup and other coughs.We collected a series of recordings representing pertussis, croup and miscellaneous coughing by children. We manually categorized coughs as either pertussis or non-pertussis, and extracted features for each category. We used Mel-frequency cepstral coefficients (MFCC), a sampling rate of 16 KHz, a frame Duration of 25 msec, and a frame rate of 10 msec. The coughs were filtered. Each cough was divided into 3 sections of proportion 3-4-3. The average of the 13 MFCCs for each section was computed and made into a 39-element feature vector used for the classification. We used the following machine learning algorithms: Neural Networks, K-Nearest Neighbor (KNN), and a 200 tree Random Forest (RF). Data were reserved for cross-validation of the KNN and RF. The Neural Network was trained 100 times, and the averaged results are presented.After categorization, we had 16 examples of non-pertussis coughs and 31 examples of pertussis coughs. Over 90% of all pertussis coughs were properly classified as pertussis. The error rates were: Type I errors of 7%, 12%, and 25% and Type II errors of 8%, 0%, and 0%, using the Neural Network, Random Forest, and KNN, respectively.Our results suggest that we can build a robust classifier to assist clinicians and the public to help identify pertussis cases in children presenting with typical symptoms.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
8
Issue :
12
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.bb5bf02aa434ac0b5ab3997547bf329
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0082971