Back to Search Start Over

Reduction of metastatic potential by inhibiting EGFR/Akt/p38/ERK signaling pathway and epithelial-mesenchymal transition after carbon ion exposure is potentiated by PARP-1 inhibition in non-small-cell lung cancer

Authors :
Priyanka Chowdhury
Payel Dey
Sourav Ghosh
Asitikantha Sarma
Utpal Ghosh
Source :
BMC Cancer, Vol 19, Iss 1, Pp 1-12 (2019)
Publication Year :
2019
Publisher :
BMC, 2019.

Abstract

Abstract Background Carbon ion (12C) radiotherapy is becoming very promising to kill highly metastatic cancer cells keeping adjacent normal cells least affected. Our previous study shows that combined PARP-1 inhibition with 12C ion reduces MMP-2,-9 synergistically in HeLa cells but detailed mechanism are not clear. To understand this mechanism and the rationale of using PARP-1 inhibitor with 12C ion radiotherapy for better outcome in controlling metastasis, we investigated metastatic potential in two non-small cell lung cancer (NSCLC) A549 and H1299 (p53-deficient) cells exposed with 12C ion in presence and absence of PARP-1 inhibition using siRNA or olaparib. Methods We monitored cell proliferation, in-vitro cell migration, wound healing, expression and activity of MMP-2, − 9 in A549 and p53-deficient H1299 cell lines exposed with 12C ion with and without PARP-1 inhibitor olaparib/DPQ. Expression and phosphorylation of NF-kB, EGFR, Akt, p38, ERK was also observed in A549 and H1299 cells exposed with 12C ion with and without PARP-1 inhibition using siRNA or olaparib. We also checked expression of few marker genes involved in epithelial-mesenchymal transition (EMT) pathways like N-cadherin, vimentin, anillin, claudin-1, − 2 in both NSCLC. To determine the generalized effect of 12C ion and olaparib in inhibition of cell’s metastatic potential, wound healing and activity of MMP-2, − 9 was also studied in HeLa and MCF7 cell lines after 12C ion exposure and in combination with PARP-1 inhibitor olaparib. Results Our experiments show that 12C ion and PARP-1 inhibition separately reduces cell proliferation, cell migration, wound healing, phosphorylation of EGFR, Akt, p38, ERK resulting inactivation of NF-kB. Combined treatment abolishes NF-kB expression and hence synergistically reduces MMP-2, − 9 expressions. Each single treatment reduces N-cadherin, vimentin, anillin but increases claudin-1, − 2 leading to suppression of EMT process. However, combined treatment synergistically alters these proteins to suppress EMT pathways significantly. Conclusion The activation pathways of transcription of MMP-2,-9 via NF-kB and key marker proteins in EMT pathways are targeted by both 12C ion and olaparib/siRNA. Hence, 12C ion radiotherapy could potentially be combined with olaparib as chemotherapeutic agent for better control of cancer metastasis.

Details

Language :
English
ISSN :
14712407
Volume :
19
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Cancer
Publication Type :
Academic Journal
Accession number :
edsdoj.bb5f0b6ac97406dbf122d1b21010a43
Document Type :
article
Full Text :
https://doi.org/10.1186/s12885-019-6015-4