Back to Search Start Over

Non-volatile rippled-assisted optoelectronic array for all-day motion detection and recognition

Authors :
Xingchen Pang
Yang Wang
Yuyan Zhu
Zhenhan Zhang
Du Xiang
Xun Ge
Haoqi Wu
Yongbo Jiang
Zizheng Liu
Xiaoxian Liu
Chunsen Liu
Weida Hu
Peng Zhou
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-9 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract In-sensor processing has the potential to reduce the energy consumption and hardware complexity of motion detection and recognition. However, the state-of-the-art all-in-one array integration technologies with simultaneous broadband spectrum image capture (sensory), image memory (storage) and image processing (computation) functions are still insufficient. Here, macroscale (2 × 2 mm2) integration of a rippled-assisted optoelectronic array (18 × 18 pixels) for all-day motion detection and recognition. The rippled-assisted optoelectronic array exhibits remarkable uniformity in the memory window, optically stimulated non-volatile positive and negative photoconductance. Importantly, the array achieves an extensive optical storage dynamic range exceeding 106, and exceptionally high room-temperature mobility up to 406.7 cm2 V−1 s−1, four times higher than the International Roadmap for Device and Systems 2028 target. Additionally, the spectral range of each rippled-assisted optoelectronic processor covers visible to near-infrared (405 nm–940 nm), achieving function of motion detection and recognition.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.bb9893e95c540faba8a5acc7d3803cf
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-46050-z