Sorry, I don't understand your search. ×
Back to Search Start Over

Research of the Backlash Detection Method of RV40E Precision Reducer

Authors :
Zhao Daxing
Qin Yuan
Wu Guiming
Li Xixing
Liu Hongdi
Source :
Jixie chuandong, Vol 44, Pp 149-154 (2020)
Publication Year :
2020
Publisher :
Editorial Office of Journal of Mechanical Transmission, 2020.

Abstract

The bidirectional transmission error method is a dynamic continuous backlash detection method based on transmission error detection. Aiming at the fitting error problem of traditional static hysteretic curve testing RV reducer, an improved hysteretic curve method is proposed. By changing the testing steps, the measured data can form a continuous closed curve, avoiding the measurement error caused by data fitting. Comparison and analysis of hysteresis curve and bidirectional transmission error method for detecting backlash, under the same torque, the former measured the backlash corresponding to a certain meshing point, while the latter measured the curve of backlash variation. Under different loads, the former measured the curve of backlash versus torque, while the latter measured the curve cluster of backlash, which not only reflected the fluctuation of backlash with meshing position, but also reflected the change of backlash with load. Tested with RV40E prototype shows that the improved hysteresis curve method performs well in static testing, but the difference measured by the hysteresis curve method is always within the fluctuation range of the bidirectional transmission error method. The experimental data show that the bidirectional transmission error method has a high degree of automation, the time is shortened by 25.44%, and the efficiency is obviously improved.

Details

Language :
Chinese
ISSN :
10042539
Volume :
44
Database :
Directory of Open Access Journals
Journal :
Jixie chuandong
Publication Type :
Academic Journal
Accession number :
edsdoj.bc48037eb0bc4e5f967ec73868945afc
Document Type :
article
Full Text :
https://doi.org/10.16578/j.issn.1004.2539.2020.06.025