Back to Search Start Over

High-throughput ligand profile characterization in novel cell lines expressing seven heterologous insect olfactory receptors for the detection of volatile plant biomarkers

Authors :
Katalin Zboray
Adam V. Toth
Tímea D. Miskolczi
Krisztina Pesti
Emilio Casanova
Emanuel Kreidl
Arpad Mike
Áron Szenes
László Sági
Peter Lukacs
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-11 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Agriculturally important crop plants emit a multitude of volatile organic compounds (VOCs), which are excellent indicators of their health status and their interactions with pathogens and pests. In this study, we have developed a novel cellular olfactory panel for detecting fungal pathogen-related VOCs we had identified in the field, as well as during controlled inoculations of several crop plants. The olfactory panel consists of seven stable HEK293 cell lines each expressing a functional Drosophila olfactory receptor as a biosensing element along with GCaMP6, a fluorescent calcium indicator protein. An automated 384-well microplate reader was used to characterize the olfactory receptor cell lines for their sensitivity to reference VOCs. Subsequently, we profiled a set of 66 VOCs on all cell lines, covering a concentration range from 1 to 100 μM. Results showed that 49 VOCs (74.2%) elicited a response in at least one olfactory receptor cell line. Some VOCs activated the cell lines even at nanomolar (ppb) concentrations. The interaction profiles obtained here will support the development of biosensors for agricultural applications. Additionally, the olfactory receptor proteins can be purified from these cell lines with sufficient yields for further processing, such as structure determination or integration with sensor devices.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.bde1dc84b033479086f28e42e35f79aa
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-47455-4