Back to Search Start Over

Predicting GPR Signals from Concrete Structures Using Artificial Intelligence-Based Method

Authors :
Wael Zatar
Tu T. Nguyen
Hai Nguyen
Source :
Advances in Civil Engineering, Vol 2021 (2021)
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

This paper presents the application of an Artificial Intelligence-based method in analyzing the effects of environmental conditions, chloride contamination in concrete, and surface corrosion of rebars on the amplitude of Ground Penetrating Radar (GPR) signals. Six reinforced concrete slabs with different chloride contamination mixtures were fabricated and tested. GPR data were collected under various temperature and ambient humidity combinations. A total of 288 rebar picks were used for training, validation, and testing the proposed Artificial Neural Network (ANN) model. Multiple ANN model configurations with a variation in learning algorithms and the number of nodes in the hidden layer were explored to obtain the optimal model for the nondestructive data. It is shown that the “trainlm” learning algorithm produced the high accuracy prediction of the reflection amplitude of GPR signals. The sensitivity analysis was also conducted with the ANN model to investigate the effects of the input on the output parameters. Results from the sensitivity analysis revealed that the GPR reflection amplitudes were more sensitive to the changes of temperature parameter (TEM) and chloride contamination level (CCL), while they were less sensitive to the variation of ambient relative humidity (ARH) and rust condition on the rebar surface (CSR).

Details

Language :
English
ISSN :
16878086 and 16878094
Volume :
2021
Database :
Directory of Open Access Journals
Journal :
Advances in Civil Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.bdf6887ccf1c469189072d147f87ef26
Document Type :
article
Full Text :
https://doi.org/10.1155/2021/6610805