Back to Search Start Over

A regional comparison of children’s blood cadmium, lead, and mercury in rural, urban and industrial areas of six European countries, and China, Ecuador, and Morocco

Authors :
Františka Hrubá
Milena Černá
Chunying Chen
Florencia Harari
Milena Horvat
Kvetoslava Koppová
Andrea Krsková
Jawhar Laamech
Yu-Feng Li
Lina Löfmark
Thomas Lundh
Badiaa Lyoussi
Darja Mazej
Joško Osredkar
Krystyna Pawlas
Natalia Pawlas
Adam Prokopowicz
Gerda Rentschler
Janja Snoj Tratnik
Johan Sommar
Věra Spěváčková
Zdravko Špirić
Staffan Skerfving
Ingvar A. Bergdahl
Source :
International Journal of Occupational Medicine and Environmental Health, Vol 36, Iss 3, Pp 349-364 (2023)
Publication Year :
2023
Publisher :
Nofer Institute of Occupational Medicine, 2023.

Abstract

Objectives The authors aimed to evaluate whether blood cadmium (B-Cd), lead (B-Pb) and mercury (B-Hg) in children differ regionally in 9 countries, and to identify factors correlating with exposure. Material and Methods The authors performed a cross-sectional study of children aged 7–14 years, living in 2007–2008 in urban, rural, or potentially polluted (“hot spot”) areas (ca. 50 children from each area, in total 1363 children) in 6 European and 3 non-European countries. The authors analyzed Cd, Pb, and total Hg in blood and collected information on potential determinants of exposure through questionnaires. Regional differences in exposure levels were assessed within each country. Results Children living near industrial “hot-spots” had B-Cd 1.6 (95% CI: 1.4–1.9) times higher in the Czech Republic and 2.1 (95% CI:1.6–2.8) times higher in Poland, as compared to urban children in the same countries (geometric means [GM]: 0.13 μg/l and 0.15 μg/l, respectively). Correspondingly, B-Pb in the “hot spot” areas was 1.8 (95% CI: 1.6–2.1) times higher than in urban areas in Slovakia and 2.3 (95% CI: 1.9–2.7) times higher in Poland (urban GM: 19.4 μg/l and 16.3 μg/l, respectively). In China and Morocco, rural children had significantly lower B-Pb than urban ones (urban GM: 64 μg/l and 71 μg/l, respectively), suggesting urban exposure from leaded petrol, water pipes and/or coal-burning. Hg “hot spot” areas in China had B-Hg 3.1 (95% CI: 2.7–3.5) times higher, and Ecuador 1.5 (95% CI: 1.2–1.9) times higher, as compared to urban areas (urban GM: 2.45 μg/l and 3.23 μg/l, respectively). Besides industrial exposure, traffic correlated with B-Cd; male sex, environmental tobacco smoke, and offal consumption with B-Pb; and fish consumption and amalgam fillings with B-Hg. However, these correlations could only marginally explain regional differences. Conclusions These mainly European results indicate that some children experience about doubled exposures to toxic elements just because of where they live. These exposures are unsafe, identifiable, and preventable and therefore call for preventive actions. Int J Occup Med Environ Health. 2023;36(3):349–64

Details

Language :
English
ISSN :
12321087 and 1896494X
Volume :
36
Issue :
3
Database :
Directory of Open Access Journals
Journal :
International Journal of Occupational Medicine and Environmental Health
Publication Type :
Academic Journal
Accession number :
edsdoj.be050641d0741bfaad020df06b47ecd
Document Type :
article
Full Text :
https://doi.org/10.13075/ijomeh.1896.02139