Back to Search Start Over

Evaluating coral trophic strategies using fatty acid composition and indices.

Authors :
Veronica Z Radice
Michael T Brett
Brian Fry
Michael D Fox
Ove Hoegh-Guldberg
Sophie G Dove
Source :
PLoS ONE, Vol 14, Iss 9, p e0222327 (2019)
Publication Year :
2019
Publisher :
Public Library of Science (PLoS), 2019.

Abstract

The ecological success of shallow water reef-building corals has been linked to the symbiosis between the coral host and its dinoflagellate symbionts (herein 'symbionts'). As mixotrophs, symbiotic corals depend on nutrients 1) transferred from their photosynthetic symbionts (autotrophy) and 2) acquired by host feeding on particulate organic resources (heterotrophy). However, coral species differ in the extent to which they depend on heterotrophy for nutrition and these differences are typically poorly defined. Here, a multi-tracer fatty acid approach was used to evaluate the trophic strategies of three species of common reef-building coral (Galaxea fascicularis, Pachyseris speciosa, and Pocillopora verrucosa) whose trophic strategies had previously been identified using carbon stable isotopes. The composition and various indices of fatty acids were compared to examine the relative contribution of symbiont autotrophy and host heterotrophy in coral energy acquisition. A linear discriminant analysis (LDA) was used to estimate the contribution of polyunsaturated fatty acids (PUFA) derived from various potential sources to the coral hosts. The total fatty acid composition and fatty acid indices revealed differences between the more heterotrophic (P. verrucosa) and more autotrophic (P. speciosa) coral hosts, with the coral host G. fascicularis showing overlap with the other two species and greater variability overall. For the more heterotrophic P. verrucosa, the fatty acid indices and LDA results both indicated a greater proportion of copepod-derived fatty acids compared to the other coral species. Overall, the LDA estimated that PUFA derived from particulate resources (e.g., copepods and diatoms) comprised a greater proportion of coral host PUFA in contrast to the lower proportion of symbiont-derived PUFA. These estimates provide insight into the importance of heterotrophy in coral nutrition, especially in productive reef systems. The study supports carbon stable isotope results and demonstrates the utility of fatty acid analyses for exploring the trophic strategies of reef-building corals.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
14
Issue :
9
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.be09d7d4f1745068a8c09330e15939e
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0222327