Back to Search Start Over

On the denominators of harmonic numbers. IV

Authors :
Wu, Bing-Ling
Yan, Xiao-Hui
Source :
Comptes Rendus. Mathématique, Vol 360, Iss G1, Pp 53-57 (2022)
Publication Year :
2022
Publisher :
Académie des sciences, 2022.

Abstract

Let $\mathcal{L}$ be the set of all positive integers $n$ such that the denominator of $1+1/2+\cdots +1/n$ is less than the least common multiple of $1, 2, \dots , n$. In this paper, under a certain assumption on linear independence, we prove that the set $\mathcal{L}$ has the upper asymptotic density $1$. The assumption follows from Schanuel’s conjecture.

Details

Language :
English, French
ISSN :
17783569
Volume :
360
Issue :
G1
Database :
Directory of Open Access Journals
Journal :
Comptes Rendus. Mathématique
Publication Type :
Academic Journal
Accession number :
edsdoj.be0a600aa714edf8842b3675171c813
Document Type :
article
Full Text :
https://doi.org/10.5802/crmath.282