Back to Search
Start Over
On the denominators of harmonic numbers. IV
- Source :
- Comptes Rendus. Mathématique, Vol 360, Iss G1, Pp 53-57 (2022)
- Publication Year :
- 2022
- Publisher :
- Académie des sciences, 2022.
-
Abstract
- Let $\mathcal{L}$ be the set of all positive integers $n$ such that the denominator of $1+1/2+\cdots +1/n$ is less than the least common multiple of $1, 2, \dots , n$. In this paper, under a certain assumption on linear independence, we prove that the set $\mathcal{L}$ has the upper asymptotic density $1$. The assumption follows from Schanuel’s conjecture.
- Subjects :
- harmonic numbers
least common multiples
upper asymptotic density
Mathematics
QA1-939
Subjects
Details
- Language :
- English, French
- ISSN :
- 17783569
- Volume :
- 360
- Issue :
- G1
- Database :
- Directory of Open Access Journals
- Journal :
- Comptes Rendus. Mathématique
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.be0a600aa714edf8842b3675171c813
- Document Type :
- article
- Full Text :
- https://doi.org/10.5802/crmath.282