Back to Search
Start Over
Efficient Feature-Aware Hybrid Model of Deep Learning Architectures for Speech Emotion Recognition
- Source :
- IEEE Access, Vol 9, Pp 19999-20011 (2021)
- Publication Year :
- 2021
- Publisher :
- IEEE, 2021.
-
Abstract
- Robust automatic speech emotional-speech recognition architectures based on hybrid convolutional neural networks (CNN) and feedforward deep neural networks are proposed and named in this paper as: BFN, CNA, and HBN. BFN is a combination between bag-of-Audio-word (BoAW) and feedforward deep neural network, CNA based on CNN, finally, HBN is hybrid architecture between BFN and CNA. Overall accuracy is achieved by leveraging Mel-frequency cepstral coefficient features and bag-of-acoustic-words to feed the network, resulting in promising classification performance. In addition, the concatenated output from the proposed hybrid networks is fed into a softmax layer to produce a probability distribution over categorical classifications for speech recognition. The three proposed models are trained on eight emotional classes from the Ryerson Audio-Visual Database of Emotional Speech and Song audio (RAVDESS) dataset. Our proposed models achieved overall precision between 81.5% and 85.5% and overall accuracy between 80.6% and 84.5%, hence outperforming state-of-the-art models using the same dataset.
Details
- Language :
- English
- ISSN :
- 21693536
- Volume :
- 9
- Database :
- Directory of Open Access Journals
- Journal :
- IEEE Access
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.be5876528a90429da0507f016eae997a
- Document Type :
- article
- Full Text :
- https://doi.org/10.1109/ACCESS.2021.3054345