Back to Search Start Over

Development and Evaluation of Surfactant Nanocapsules for Chemical Enhanced Oil Recovery (EOR) Applications

Authors :
Farid B. Cortés
Mónica Lozano
Oveimar Santamaria
Stefania Betancur Marquez
Karol Zapata
Natalia Ospina
Camilo A. Franco
Source :
Molecules, Vol 23, Iss 7, p 1523 (2018)
Publication Year :
2018
Publisher :
MDPI AG, 2018.

Abstract

The primary objective of this study is the synthesis of nanocapsules (NC) that allow the reduction of the adsorption process of surfactant over the porous media in enhanced oil recovery processes. Nanocapsules were synthesized through the nanoprecipitation method by encapsulating commercial surfactants Span 20 and Petro 50, and using type II resins isolated from vacuum residue as a shell. The NC were characterized using dynamic light scattering, transmission electron microscopy, Fourier transform infrared, solvency tests, softening point measurements and entrapment efficiency. The obtained NC showed spherical geometry with sizes of 71 and 120 nm for encapsulated Span 20 (NCS20), and Petro 50 surfactant (NCP50), respectively. Also, the NCS20 is composed of 90% of surfactant and 10% of type II resins, while the NCP50 material is 94% of surfactant and 6% of the shell. Nanofluids of nanocapsules dispersed in deionized water were prepared for evaluating the nanofluid—sandstone interaction from adsorption phenomena using a batch-mode method, contact angle measurements, and FTIR analysis. The results showed that NC adsorption was null at the different conditions of temperatures evaluated of 25, 50, and 70 °C, and stirring velocities up to 10,000 rpm. IFT measurements showed a reduction from 18 to 1.62 and 0.15 mN/m for the nanofluids with 10 mg/L of NCS20, and NCP50 materials, respectively. Displacements tests were conducted using a 20 °API crude oil in a quarter five-spot pattern micromodel and showed an additional oil recovery of 23% in comparison with that of waterflooding, with fewer pore volumes injected than when using a dissolved surfactant.

Details

Language :
English
ISSN :
14203049
Volume :
23
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.bf44efd4fa04725965c6c0ff68c3193
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules23071523