Back to Search Start Over

Bidirectional Planning for Autonomous Driving Framework with Large Language Model

Authors :
Zhikun Ma
Qicong Sun
Takafumi Matsumaru
Source :
Sensors, Vol 24, Iss 20, p 6723 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Autonomous navigation systems often struggle in dynamic, complex environments due to challenges in safety, intent prediction, and strategic planning. Traditional methods are limited by rigid architectures and inadequate safety mechanisms, reducing adaptability to unpredictable scenarios. We propose SafeMod, a novel framework enhancing safety in autonomous driving by improving decision-making and scenario management. SafeMod features a bidirectional planning structure with two components: forward planning and backward planning. Forward planning predicts surrounding agents’ behavior using text-based environment descriptions and reasoning via large language models, generating action predictions. These are embedded into a transformer-based planner that integrates text and image data to produce feasible driving trajectories. Backward planning refines these trajectories using policy and value functions learned through Actor–Critic-based reinforcement learning, selecting optimal actions based on probability distributions. Experiments on CARLA and nuScenes benchmarks demonstrate that SafeMod outperforms recent planning systems in both real-world and simulation testing, significantly improving safety and decision-making. This underscores SafeMod’s potential to effectively integrate safety considerations and decision-making in autonomous driving.

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
20
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.f03b8871abe44209b6f4f42d3078f52e
Document Type :
article
Full Text :
https://doi.org/10.3390/s24206723