Back to Search Start Over

Variations on statistical quasi Cauchy sequences

Authors :
Huseyin Cakalli
Source :
Boletim da Sociedade Paranaense de Matemática, Vol 38, Iss 3 (2019)
Publication Year :
2019
Publisher :
Sociedade Brasileira de Matemática, 2019.

Abstract

In this paper, we introduce a concept of statistically $p$-quasi-Cauchyness of a real sequence in the sense that a sequence $(\alpha_{k})$ is statistically $p$-quasi-Cauchy if $\lim_{n\rightarrow\infty}\frac{1}{n}|\{k\leq n: |\alpha_{k+p}-\alpha_{k}|\geq{\varepsilon}\}|=0$ for each $\varepsilon>0$. A function $f$ is called statistically $p$-ward continuous on a subset $A$ of the set of real umbers $\mathbb{R}$ if it preserves statistically $p$-quasi-Cauchy sequences, i.e. the sequence $f(\textbf{x})=(f(\alpha_{n}))$ is statistically $p$-quasi-Cauchy whenever $\boldsymbol\alpha=(\alpha_{n})$ is a statistically $p$-quasi-Cauchy sequence of points in $A$. It turns out that a real valued function $f$ is uniformly continuous on a bounded subset $A$ of $\mathbb{R}$ if there exists a positive integer $p$ such that $f$ preserves statistically $p$-quasi-Cauchy sequences of points in $A$.

Details

Language :
English, Portuguese
ISSN :
00378712 and 21751188
Volume :
38
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Boletim da Sociedade Paranaense de Matemática
Publication Type :
Academic Journal
Accession number :
edsdoj.f03f3f3bca1042cbb010a54b99188aab
Document Type :
article
Full Text :
https://doi.org/10.5269/bspm.v38i3.39991