Back to Search
Start Over
Variations on statistical quasi Cauchy sequences
- Source :
- Boletim da Sociedade Paranaense de Matemática, Vol 38, Iss 3 (2019)
- Publication Year :
- 2019
- Publisher :
- Sociedade Brasileira de Matemática, 2019.
-
Abstract
- In this paper, we introduce a concept of statistically $p$-quasi-Cauchyness of a real sequence in the sense that a sequence $(\alpha_{k})$ is statistically $p$-quasi-Cauchy if $\lim_{n\rightarrow\infty}\frac{1}{n}|\{k\leq n: |\alpha_{k+p}-\alpha_{k}|\geq{\varepsilon}\}|=0$ for each $\varepsilon>0$. A function $f$ is called statistically $p$-ward continuous on a subset $A$ of the set of real umbers $\mathbb{R}$ if it preserves statistically $p$-quasi-Cauchy sequences, i.e. the sequence $f(\textbf{x})=(f(\alpha_{n}))$ is statistically $p$-quasi-Cauchy whenever $\boldsymbol\alpha=(\alpha_{n})$ is a statistically $p$-quasi-Cauchy sequence of points in $A$. It turns out that a real valued function $f$ is uniformly continuous on a bounded subset $A$ of $\mathbb{R}$ if there exists a positive integer $p$ such that $f$ preserves statistically $p$-quasi-Cauchy sequences of points in $A$.
- Subjects :
- sequences
series
real functions
continuity
compactness
Mathematics
QA1-939
Subjects
Details
- Language :
- English, Portuguese
- ISSN :
- 00378712 and 21751188
- Volume :
- 38
- Issue :
- 3
- Database :
- Directory of Open Access Journals
- Journal :
- Boletim da Sociedade Paranaense de Matemática
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.f03f3f3bca1042cbb010a54b99188aab
- Document Type :
- article
- Full Text :
- https://doi.org/10.5269/bspm.v38i3.39991