Back to Search Start Over

Integration of Smartphones Into Small Unmanned Aircraft Systems to Sense Water in Soil by Using Reflected GPS Signals

Authors :
Mehmet Kurum
Md. Mehedi Farhad
Ali Cafer Gurbuz
Source :
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 14, Pp 1048-1059 (2021)
Publication Year :
2021
Publisher :
IEEE, 2021.

Abstract

We investigate the feasibility of using built-in GNSS sensors within ubiquitous smartphone devices from a small UAS for the purpose of land remote sensing. We summarize the experimental findings and challenges that need to be resolved in order to perform the GNSS reflectometry (GNSS-R) technique via smartphones. In late 2018, a series of experiments were conducted and designed by integrating two smartphones into a multicopter UAS by attaching them to ground plates to isolate and record both direct and reflected GNSS carrier-to-noise density ratio ($C/N_0$) separately. It was demonstrated that, first, fluctuations of moving GNSS specular reflections are correlated with spatial ground features with appreciable dynamic range and second, radiation pattern of the smartphone's inbuilt antenna has a significant effect on the received signal strength. In 2020, more experiments were conducted to examine the quality of in-built chip and antenna of a smartphone with regard to the GNSS-R approach as well as the consistency of measurements. These follow-up experiments involved, first, placement of the smartphone on a pan-tilt mechanism on a tripod, second, formation flights with smartphone on a gimbal and a high-quality custom-built dual-channel GNSS-R receiver, and, third, flying the UAS at different times of the day on two consecutive days. It was demonstrated that, first, the radiation pattern of the smartphone's GNSS antenna are observed to be highly irregular, but time-invariant, and, second, internal GNSS chip produces observables of sufficient quality, and, third, the fluctuations of the reflected signal are repeatable under the same configuration at different times.

Details

Language :
English
ISSN :
21511535
Volume :
14
Database :
Directory of Open Access Journals
Journal :
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.f112fcca2494242834342071d0eef52
Document Type :
article
Full Text :
https://doi.org/10.1109/JSTARS.2020.3041162