Back to Search Start Over

Research on the structure function recognition of PLOS

Authors :
Jiangfeng Liu
Zhixiao Zhao
Na Wu
Xiyu Wang
Source :
Frontiers in Artificial Intelligence, Vol 7 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

PurposeThe present study explores and investigates the efficiency of deep learning models in identifying discourse structure and functional features and explores the potential application of natural language processing (NLP) techniques in text mining, information measurement, and scientific communication.MethodThe PLOS literature series has been utilized to obtain full-text data, and four deep learning models, including BERT, RoBERTa, SciBERT, and SsciBERT, have been employed for structure-function recognition.ResultThe experimental findings reveal that the SciBERT model performs outstandingly, surpassing the other models, with an F1 score. Additionally, the performance of different paragraph structures has been analyzed, and it has been found that the model performs well in paragraphs such as method and result.ConclusionThe study's outcomes suggest that deep learning models can recognize the structure and functional elements at the discourse level, particularly for scientific literature, where the SciBERT model performs remarkably. Moreover, the NLP techniques have extensive prospects in various fields, including text mining, information measurement, and scientific communication. By automatically parsing and identifying structural and functional information in text, the efficiency of literature management and retrieval can be improved, thereby expediting scientific research progress. Therefore, deep learning and NLP technologies hold significant value in scientific research.

Details

Language :
English
ISSN :
26248212
Volume :
7
Database :
Directory of Open Access Journals
Journal :
Frontiers in Artificial Intelligence
Publication Type :
Academic Journal
Accession number :
edsdoj.f18a3588106a4e04bf52ac68baf333c0
Document Type :
article
Full Text :
https://doi.org/10.3389/frai.2024.1254671