Back to Search Start Over

Lysyl Oxidase in Ectopic Cardiovascular Calcification: Role of Oxidative Stress

Authors :
Carme Ballester-Servera
Judith Alonso
Laia Cañes
Paula Vázquez-Sufuentes
Ana B. García-Redondo
Cristina Rodríguez
José Martínez-González
Source :
Antioxidants, Vol 13, Iss 5, p 523 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Lysyl oxidase (LOX)-mediated extracellular matrix crosslinking modulates calcification in atherosclerosis and aortic valve disease; however, this enzyme also induces oxidative stress. We addressed the contribution of LOX-dependent oxidative stress to cardiovascular calcification. LOX is upregulated in human-calcified atherosclerotic lesions and atheromas from atherosclerosis-challenged LOX transgenic mice (TgLOXVSMC) and colocalized with a marker of oxidative stress (8-oxo-deoxyguanosine) in vascular smooth muscle cells (VSMCs). Similarly, in calcific aortic valves, high LOX expression was detected in valvular interstitial cells (VICs) positive for 8-oxo-deoxyguanosine, while LOX and LOXL2 expression correlated with osteogenic markers (SPP1 and RUNX2) and NOX2. In human VICs, mito-TEMPO and TEMPOL attenuated the increase in superoxide anion levels and the mineralization induced by osteogenic media (OM). Likewise, in OM-exposed VICs, β-aminopropionitrile (a LOX inhibitor) ameliorated both oxidative stress and calcification. Gain- and loss-of-function approaches in VICs demonstrated that while LOX silencing negatively modulates oxidative stress and calcification induced by OM, lentiviral LOX overexpression exacerbated oxidative stress and VIC calcification, effects that were prevented by mito-TEMPO, TEMPOL, and β-aminopropionitrile. Our data indicate that LOX-induced oxidative stress participates in the procalcifying effects of LOX activity in ectopic cardiovascular calcification, and highlight the multifaceted role played by LOX isoenzymes in cardiovascular diseases.

Details

Language :
English
ISSN :
20763921
Volume :
13
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Antioxidants
Publication Type :
Academic Journal
Accession number :
edsdoj.f1c3b0853b15440f8ad28cd6a3189eaa
Document Type :
article
Full Text :
https://doi.org/10.3390/antiox13050523