Back to Search Start Over

Genotypic variation in the response of soybean to elevated CO2

Authors :
José C. Soares
Lars Zimmermann
Nicolas Zendonadi dos Santos
Onno Muller
Manuela Pintado
Marta W. Vasconcelos
Source :
Plant-Environment Interactions, Vol 2, Iss 6, Pp 263-276 (2021)
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

Abstract The impact of elevated CO2 (eCO2) on soybean productivity is essential to the global food supply because it is the world's leading source of vegetable proteins. This study aimed to understand the yield responses and nutritional impact under free‐air CO2 enrichment (FACE) conditions of soybean genotypes. Here we report that grain yield increased by 46.9% and no reduction in harvest index was observed among soybean genotypes. Elevated CO2 improved the photosynthetic carbon assimilation rate, leaf area, plant height, and aboveground biomass at vegetative and pod filling stages. Besides the positive effects on yield parameters, eCO2 differentially affected the overall grain quality. The levels of calcium (Ca), phosphorous (P), potassium (K), magnesium (Mg), manganese (Mn), iron (Fe), boron (B), and zinc (Zn) grain minerals decreased by 22.9, 9.0, 4.9, 10.1, 21.3, 28.1, 18.5, and 25.9% under eCO2 conditions, respectively. Soluble sugars and starch increased by 9.1 and 16.0%, respectively, phytic acid accumulation increased by 8.1%, but grain protein content significantly decreased by 5.6% across soybean genotypes. Furthermore, the antioxidant activity decreased by 36.9%, but the total phenolic content was not affected by eCO2 conditions. Genotypes, such as Winsconsin Black, Primorskaja, and L‐117, were considered the most responsive to eCO2 in terms of yield enhancement and less affected in the nutritional quality. Our results confirm the existence of genetic variability in soybean responses to eCO2, and differences between genotypes in yield improvement and decreased sensitivity to eCO2 in terms of grain quality loss could be included in future soybean selection to enable adaptation to climate change.

Details

Language :
English
ISSN :
25756265
Volume :
2
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Plant-Environment Interactions
Publication Type :
Academic Journal
Accession number :
edsdoj.f1d6e3a2a3f44b23bc205f9c4a830aad
Document Type :
article
Full Text :
https://doi.org/10.1002/pei3.10065