Back to Search Start Over

Baicalin Protects Broilers against Avian Coronavirus Infection via Regulating Respiratory Tract Microbiota and Amino Acid Metabolism

Authors :
Haipeng Feng
Jingyan Zhang
Xuezhi Wang
Zhiting Guo
Lei Wang
Kang Zhang
Jianxi Li
Source :
International Journal of Molecular Sciences, Vol 25, Iss 4, p 2109 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

An increasing amount of evidence indicates that Baicalin (Bai, a natural glycosyloxyflavone compound) exhibits an antiviral effect against avian viruses. However, it remains unclear if the antiviral effect of Bai against infectious bronchitis virus (IBV) is exerted indirectly by modulating respiratory tract microbiota and/or their metabolites. In this study, we investigated the protection efficacy of Bai in protecting cell cultures and broilers from IBV infection and assessed modulation of respiratory tract microbiota and metabolites during infection. Bai was administered orally to broilers by being mixed in with drinking water for seven days. Ultimately, broilers were challenged with live IBV. The results showed that Bai treatment reduced respiratory tract symptoms, improved weight gain, slowed histopathological damage, reduced virus loads and decreased pro-inflammation cytokines production. Western blot analysis demonstrated that Bai treatment significantly inhibited Toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MyD88) and nuclear factor kappa-B (NF-κB) expression both in cell culture and cells of the trachea. Bai treatment reversed respiratory tract microbiota dysbiosis, as shown by 16S rDNA sequencing in the group of broilers inoculated with IBV. Indeed, we observed a decrease in Proteobacteria abundance and an increase in Firmicutes abundance. Metabolomics results suggest that the pentose phosphate pathway, amino acid and nicotinamide metabolism are linked to the protection conferred by Bai against IBV infection. In conclusion, these results indicated that further assessment of anti-IBV strategies based on Bai would likely result in the development of antiviral molecule(s) which can be administered by being mixed with feed or water.

Details

Language :
English
ISSN :
14220067 and 16616596
Volume :
25
Issue :
4
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.f24ea3b613542d098fd821bcf70fecc
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms25042109