Back to Search Start Over

Nanoscale Torsional Dissipation Dilution for Quantum Experiments and Precision Measurement

Authors :
J. R. Pratt
A. R. Agrawal
C. A. Condos
C. M. Pluchar
S. Schlamminger
D. J. Wilson
Source :
Physical Review X, Vol 13, Iss 1, p 011018 (2023)
Publication Year :
2023
Publisher :
American Physical Society, 2023.

Abstract

The quest for ultrahigh-Q nanomechanical resonators has driven intense study of strain-induced dissipation dilution, an effect whereby vibrations of a tensioned plate are effectively trapped in a lossless potential. Here, we show for the first time that torsion modes of nanostructures can experience dissipation dilution, yielding a new class of ultrahigh-Q nanomechanical resonators with broad applications to quantum experiments and precision measurement. Specifically, we show that torsion modes of strained nanoribbons have Q factors scaling as their width-to-thickness ratio squared (characteristic of “soft clamping”), yielding Q factors as high as 10^{8} and Q-frequency products as high as 10^{13} Hz for devices made of Si_{3}N_{4}. Using an optical lever, we show that the rotation of one such nanoribbon can be resolved with an imprecision 100 times smaller than the zero-point motion of its fundamental torsion mode, without the use of a cavity or interferometric stability. We also show that a strained nanoribbon can be mass loaded without changing its torsional Q. We use this strategy to engineer a chip-scale torsion pendulum with an ultralow damping rate of 7 μHz and show how it can be used to sense micro-g fluctuations of the local gravitational field. Our findings signal the potential for a new field of imaging-based quantum optomechanics, demonstrate that the utility of strained nanomechanics extends beyond force microscopy to inertial sensing, and hint that the landscape for dissipation dilution remains largely unexplored.

Subjects

Subjects :
Physics
QC1-999

Details

Language :
English
ISSN :
21603308
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Physical Review X
Publication Type :
Academic Journal
Accession number :
edsdoj.f27b28ab5b5c4577860bf31c21d6d0f6
Document Type :
article
Full Text :
https://doi.org/10.1103/PhysRevX.13.011018