Back to Search Start Over

Radial minimizers of a Ginzburg-Landau functional

Authors :
Yutian Lei
Zhuoqun Wu
Hongjun Yuan
Source :
Electronic Journal of Differential Equations, Vol 1999, Iss 30, Pp 1-21 (1999)
Publication Year :
1999
Publisher :
Texas State University, 1999.

Abstract

We consider the functional $$ E_varepsilon(u,G) =frac 1pint_G|abla u|^p +frac{1}{4varepsilon^p}int_G(1-|u|^2)^2 $$ with $p>2$ and $d>0$, on the class of functions $W={u(x)=f(r)e^{idheta} in W^{1,p}(B,C); f(1)=1,f(r)geq 0}$. The location of the zeroes of the minimizer and its convergence as $varepsilon$ approaches zero are established.

Details

Language :
English
ISSN :
10726691
Volume :
1999
Issue :
30
Database :
Directory of Open Access Journals
Journal :
Electronic Journal of Differential Equations
Publication Type :
Academic Journal
Accession number :
edsdoj.f28b42d2334db2ab7df6ba4293b79e
Document Type :
article