Back to Search
Start Over
Radial minimizers of a Ginzburg-Landau functional
- Source :
- Electronic Journal of Differential Equations, Vol 1999, Iss 30, Pp 1-21 (1999)
- Publication Year :
- 1999
- Publisher :
- Texas State University, 1999.
-
Abstract
- We consider the functional $$ E_varepsilon(u,G) =frac 1pint_G|abla u|^p +frac{1}{4varepsilon^p}int_G(1-|u|^2)^2 $$ with $p>2$ and $d>0$, on the class of functions $W={u(x)=f(r)e^{idheta} in W^{1,p}(B,C); f(1)=1,f(r)geq 0}$. The location of the zeroes of the minimizer and its convergence as $varepsilon$ approaches zero are established.
Details
- Language :
- English
- ISSN :
- 10726691
- Volume :
- 1999
- Issue :
- 30
- Database :
- Directory of Open Access Journals
- Journal :
- Electronic Journal of Differential Equations
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.f28b42d2334db2ab7df6ba4293b79e
- Document Type :
- article