Back to Search Start Over

From Fitting the Average to Fitting the Individual: A Cautionary Tale for Mathematical Modelers

Authors :
Michael C. Luo
Elpiniki Nikolopoulou
Jana L. Gevertz
Source :
Frontiers in Oncology, Vol 12 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

An outstanding challenge in the clinical care of cancer is moving from a one-size-fits-all approach that relies on population-level statistics towards personalized therapeutic design. Mathematical modeling is a powerful tool in treatment personalization, as it allows for the incorporation of patient-specific data so that treatment can be tailor-designed to the individual. Herein, we work with a mathematical model of murine cancer immunotherapy that has been previously-validated against the average of an experimental dataset. We ask the question: what happens if we try to use this same model to perform personalized fits, and therefore make individualized treatment recommendations? Typically, this would be done by choosing a single fitting methodology, and a single cost function, identifying the individualized best-fit parameters, and extrapolating from there to make personalized treatment recommendations. Our analyses show the potentially problematic nature of this approach, as predicted personalized treatment response proved to be sensitive to the fitting methodology utilized. We also demonstrate how a small amount of the right additional experimental measurements could go a long way to improve consistency in personalized fits. Finally, we show how quantifying the robustness of the average response could also help improve confidence in personalized treatment recommendations.

Details

Language :
English
ISSN :
2234943X
Volume :
12
Database :
Directory of Open Access Journals
Journal :
Frontiers in Oncology
Publication Type :
Academic Journal
Accession number :
edsdoj.f2eea593943d4abfb90126bedd6e0d76
Document Type :
article
Full Text :
https://doi.org/10.3389/fonc.2022.793908