Back to Search
Start Over
Three ancient hormonal cues co-ordinate shoot branching in a moss
Three ancient hormonal cues co-ordinate shoot branching in a moss
- Source :
- eLife, Vol 4 (2015)
- Publication Year :
- 2015
- Publisher :
- eLife Sciences Publications Ltd, 2015.
-
Abstract
- Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport.
Details
- Language :
- English
- ISSN :
- 2050084X
- Volume :
- 4
- Database :
- Directory of Open Access Journals
- Journal :
- eLife
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.f32776ad30eb4857ae99510515e65a8e
- Document Type :
- article
- Full Text :
- https://doi.org/10.7554/eLife.06808