Back to Search Start Over

Correction of a homoplasmic mitochondrial tRNA mutation in patient-derived iPSCs via a mitochondrial base editor

Authors :
Xiaoxu Chen
Mingyue Chen
Yuqing Zhu
Haifeng Sun
Yue Wang
Yuan Xie
Lianfu Ji
Cheng Wang
Zhibin Hu
Xuejiang Guo
Zhengfeng Xu
Jun Zhang
Shiwei Yang
Dong Liang
Bin Shen
Source :
Communications Biology, Vol 6, Iss 1, Pp 1-11 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Pathogenic mutations in mitochondrial DNA cause severe and often lethal multi-system symptoms in primary mitochondrial defects. However, effective therapies for these defects are still lacking. Strategies such as employing mitochondrially targeted restriction enzymes or programmable nucleases to shift the ratio of heteroplasmic mutations and allotopic expression of mitochondrial protein-coding genes have limitations in treating mitochondrial homoplasmic mutations, especially in non-coding genes. Here, we conduct a proof of concept study applying a screened DdCBE pair to correct the homoplasmic m.A4300G mutation in induced pluripotent stem cells derived from a patient with hypertrophic cardiomyopathy. We achieve efficient G4300A correction with limited off-target editing, and successfully restore mitochondrial function in corrected induced pluripotent stem cell clones. Our study demonstrates the feasibility of using DdCBE to treat primary mitochondrial defects caused by homoplasmic pathogenic mitochondrial DNA mutations.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
23993642
Volume :
6
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.f37332210d6142babcb847a44f5f05aa
Document Type :
article
Full Text :
https://doi.org/10.1038/s42003-023-05500-y