Back to Search Start Over

Effect of poly-α, γ, L-glutamic acid as a capping agent on morphology and oxidative stress-dependent toxicity of silver nanoparticles

Effect of poly-α, γ, L-glutamic acid as a capping agent on morphology and oxidative stress-dependent toxicity of silver nanoparticles

Authors :
Stevanović M
Kovačević B
Petković J
Filipič M
Uskoković D
Source :
International Journal of Nanomedicine, Vol 2011, Iss default, Pp 2837-2847 (2011)
Publication Year :
2011
Publisher :
Dove Medical Press, 2011.

Abstract

Magdalena Stevanović1, Branimir Kovačević2, Jana Petković3, Metka Filipič3, Dragan Uskoković11Institute of Technical Sciences of Serbian Academy of Sciences and Arts, 2Institute of General and Physical Chemistry, Belgrade, Serbia; 3Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, SloveniaAbstract: Highly stable dispersions of nanosized silver particles were synthesized using a straightforward, cost-effective, and ecofriendly method. Nontoxic glucose was utilized as a reducing agent and poly- α, γ, L-glutamic acid (PGA), a naturally occurring anionic polymer, was used as a capping agent to protect the silver nanoparticles from agglomeration and render them biocompatible. Use of ammonia during synthesis was avoided. Our study clearly demonstrates how the concentration of the capping agent plays a major role in determining the dimensions, morphology, and stability, as well as toxicity of a silver colloidal solution. Hence, proper optimization is necessary to develop silver colloids of narrow size distribution. The samples were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, and zeta potential measurement. MTT assay results indicated good biocompatibility of the PGA-capped silver nanoparticles. Formation of intracellular reactive oxygen species was measured spectrophotometrically using 2,7-dichlorofluorescein diacetate as a fluorescent probe, and it was shown that the PGA-capped silver nanoparticles did not induce intracellular formation of reactive oxygen species.Keywords: silver nanoparticles, poly-α, γ, L-glutamic, green synthesis, morphology, cytotoxicity

Subjects

Subjects :
Medicine (General)
R5-920

Details

Language :
English
ISSN :
11769114 and 11782013
Volume :
2011
Issue :
default
Database :
Directory of Open Access Journals
Journal :
International Journal of Nanomedicine
Publication Type :
Academic Journal
Accession number :
edsdoj.f37aa74487f4bdcae03d82054b1cfb5
Document Type :
article