Back to Search Start Over

Wear of sprag clutch wedge in overrun state under high temperature condition

Authors :
Jia Li
Hongzhi Yan
Minghao Lin
Mengkai Cai
Xuan Hu
Source :
Advances in Mechanical Engineering, Vol 13 (2021)
Publication Year :
2021
Publisher :
SAGE Publishing, 2021.

Abstract

A formula is proposed based on Archard’s wear model to calculate wedge wear depth in a positive continuous engagement (PCE)-type sprag clutch with double-disc inner cam wedge in the overrun state. Methods to solve for the equation parameters are proposed. Using a sprag clutch with an M50 steel wedge as an example, wedge wear depth variation over time under high temperatures was analyzed. An easy-to-clamp wedge was designed and a high-temperature abrasion testing machine was used to test the wedge. The worn surface profile was observed using a three-dimensional profiler and the wedge wear depth was obtained. The effects of lubrication, temperature and speed on wear were analyzed using mixed-level orthogonal experimental design. Results show that the theoretical values are consistent with test values. Therefore, the model can be used to calculate wear accurately for the overrunning sprag clutch. Lubrication affects wear depth significantly, whereas temperature has a smaller effect and speed has very little influence. Within the experimental scope, when the temperature increased by 1°C, the wear depth increased by approximately 0.0145 μm and when the speed increased by approximately 1 time/minute, the wear depth increased by 0.00854 μm. These results provide theoretical support for optimal sprag clutch design.

Details

Language :
English
ISSN :
16878140
Volume :
13
Database :
Directory of Open Access Journals
Journal :
Advances in Mechanical Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.f3a527cb1544378e28bc66b8536194
Document Type :
article
Full Text :
https://doi.org/10.1177/1687814021996513