Back to Search Start Over

Landau ordering phase transitions beyond the Landau paradigm

Authors :
Zhen Bi
Ethan Lake
T. Senthil
Source :
Physical Review Research, Vol 2, Iss 2, p 023031 (2020)
Publication Year :
2020
Publisher :
American Physical Society, 2020.

Abstract

Continuous phase transitions associated with the onset of a spontaneously broken symmetry are thought to be successfully described by the Landau-Ginzburg-Wilson-Fisher theory of fluctuating order parameters. In this work, we show that such transitions can admit new universality classes which cannot be understood in terms of a theory of order parameter fluctuations. We explicitly demonstrate continuous time reversal symmetry breaking quantum phase transitions of 3+1-D bosonic systems described by critical theories expressed in terms of a deconfined gauge theory with massless Dirac fermions instead of the fluctuating Ising order parameter. We dub such phase transitions “Landau transitions beyond Landau description” (LBL). A key feature of our examples is that the stability of the LBL fixed points requires a crucial global symmetry, which is nonanomalous, unbroken, and renders no symmetry protected topological phase throughout the phase diagram. Despite this, there are elementary critical fluctuations of the phase transition that transform projectively under this symmetry group. We also construct examples of other novel quantum critical phenomena, notably a continuous Landau-forbidden deconfined critical point between two Landau-allowed phases in 3+1-D.

Subjects

Subjects :
Physics
QC1-999

Details

Language :
English
ISSN :
26431564
Volume :
2
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Physical Review Research
Publication Type :
Academic Journal
Accession number :
edsdoj.f3abe652a6f349ca9e7b93ccfad4d4a3
Document Type :
article
Full Text :
https://doi.org/10.1103/PhysRevResearch.2.023031