Back to Search Start Over

Pulmonary and intestinal microbiota dynamics during Gram-negative pneumonia-derived sepsis

Authors :
Nora S. Wolff
Max C. Jacobs
W. Joost Wiersinga
Floor Hugenholtz
Source :
Intensive Care Medicine Experimental, Vol 9, Iss 1, Pp 1-14 (2021)
Publication Year :
2021
Publisher :
SpringerOpen, 2021.

Abstract

Abstract Background The gut microbiome plays a protective role in the host defense against pneumonia. The composition of the lung microbiota has been shown to be predictive of clinical outcome in critically ill patients. However, the dynamics of the lung and gut microbiota composition over time during severe pneumonia remains ill defined. We used a mouse model of pneumonia-derived sepsis caused by Klebsiella pneumoniae in order to follow the pathogen burden as well as the composition of the lung, tongue and fecal microbiota from local infection towards systemic spread. Results Already at 6 h post-inoculation with K. pneumoniae, marked changes in the lung microbiota were seen. The alpha diversity of the lung microbiota did not change throughout the infection, whereas the beta diversity did. A shift between the prominent lung microbiota members of Streptococcus and Klebsiella was seen from 12 h onwards and was most pronounced at 18 h post-inoculation (PI) which was also reflected in the release of pro-inflammatory cytokines indicating severe pulmonary inflammation. Around 18 h PI, K. pneumoniae bacteremia was observed together with a systemic inflammatory response. The composition of the tongue microbiota was not affected during infection, even at 18–30 h PI when K. pneumoniae had become the dominant bacterium in the lung. Moreover, we observed differences in the gut microbiota during pulmonary infection. The gut microbiota contributed to the lung microbiota at 12 h PI, however, this decreased at a later stage of the infection. Conclusions At 18 h PI, K. pneumoniae was the dominant member in the lung microbiota. The lung microbiota profiles were significantly explained by the lung K. pneumoniae bacterial counts and Klebsiella and Streptococcus were correlating with the measured cytokine levels in the lung and/or blood. The oral microbiota in mice, however, was not influenced by the severity of murine pneumonia, whereas the gut microbiota was affected. This study is of significance for future studies investigating the role of the lung microbiota during pneumonia and sepsis.

Details

Language :
English
ISSN :
2197425X
Volume :
9
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Intensive Care Medicine Experimental
Publication Type :
Academic Journal
Accession number :
edsdoj.f3fdedd88fa848ddb495c920b6e8c0e9
Document Type :
article
Full Text :
https://doi.org/10.1186/s40635-021-00398-4