Back to Search Start Over

Structure and Thermoelectric Characterization of p-Type SnTe Nanobulk Material Synthesized by Charge Compensation Chemical Reaction

Authors :
Ryosuke Fujiwara
Yuta Ikeda
Takuto Kawaguchi
Yohei Takashima
Takaaki Tsuruoka
Kensuke Akamatsu
Source :
Energies, Vol 17, Iss 1, p 190 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

SnTe is the most widely studied p-type thermoelectric (TE) alternative to PbTe. In this study, we prepared a nanostructured SnTe bulk material via spark plasma sintering from a precursor synthesized by a chemical precipitation process without using organic molecules. The sintered sample comprised tiny grains (100–300 nm) with high-density grain boundaries. Eventually, because the material would contain no impurities acting as scattering nodes of charge carriers, the material exhibited a relatively high electrical conductivity of 7.07 × 105 Sm−1 at 310 K. The material demonstrated low lattice thermal conductivity (0.87 Wm−1K−1 at 764 K), which can be owing to the increasing phonon scattering at grain boundaries. The maximum ZT was 0.31 at 764 K in the measured temperature range. This study provides a method for the design of phase-pure and surfactant-free SnTe thermoelectric materials that exhibit low lattice thermal conductivity and high carrier mobility using a chemical synthetic approach.

Details

Language :
English
ISSN :
19961073
Volume :
17
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Energies
Publication Type :
Academic Journal
Accession number :
edsdoj.f4265965807d4305a83664836df3eba3
Document Type :
article
Full Text :
https://doi.org/10.3390/en17010190