Back to Search Start Over

Divergent patterns of experimental and model-derived permafrost ecosystem carbon dynamics in response to Arctic warming

Authors :
Christina Schädel
Charles D Koven
David M Lawrence
Gerardo Celis
Anthony J Garnello
Jack Hutchings
Marguerite Mauritz
Susan M Natali
Elaine Pegoraro
Heidi Rodenhizer
Verity G Salmon
Meghan A Taylor
Elizabeth E Webb
William R Wieder
Edward AG Schuur
Source :
Environmental Research Letters, Vol 13, Iss 10, p 105002 (2018)
Publication Year :
2018
Publisher :
IOP Publishing, 2018.

Abstract

In the last few decades, temperatures in the Arctic have increased twice as much as the rest of the globe. As permafrost thaws in response to this warming, large amounts of soil organic matter may become vulnerable to decomposition. Microbial decomposition will release carbon (C) from permafrost soils, however, warmer conditions could also lead to enhanced plant growth and C uptake. Field and modeling studies show high uncertainty in soil and plant responses to climate change but there have been few studies that reconcile field and model data to understand differences and reduce uncertainty. Here, we evaluate gross primary productivity (GPP), ecosystem respiration (R _eco ), and net ecosystem C exchange (NEE) from eight years of experimental soil warming in moist acidic tundra against equivalent fluxes from the Community Land Model during simulations parameterized to reflect the field conditions associated with this manipulative field experiment. Over the eight-year experimental period, soil temperatures and thaw depths increased with warming in field observations and model simulations. However, the field and model results do not agree on warming effects on water table depth; warming created wetter soils in the field and drier soils in the models. In the field, initial increases in growing season GPP, R _eco , and NEE to experimentally-induced permafrost thaw created a higher C sink capacity in the first years followed by a stronger C source in years six through eight. In contrast, both models predicted linear increases in GPP, R _eco , and NEE with warming. The divergence of model results from field experiments reveals the role subsidence, hydrology, and nutrient cycling play in influencing the C flux responses to permafrost thaw, a complexity that the models are not structurally able to predict, and highlight challenges associated with projecting C cycle dynamics across the Arctic.

Details

Language :
English
ISSN :
17489326
Volume :
13
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Environmental Research Letters
Publication Type :
Academic Journal
Accession number :
edsdoj.f43115f3c09044a8a5580a6ea8a8c583
Document Type :
article
Full Text :
https://doi.org/10.1088/1748-9326/aae0ff