Back to Search Start Over

Radiotherapy-sensitized cancer immunotherapy via cGAS-STING immune pathway by activatable nanocascade reaction

Authors :
Honglei Hu
Shuting Zheng
Chenxi He
Yinfei Zheng
Qiming Wei
Siwen Chen
Zede Wu
Yikai Xu
Bingxia Zhao
Chenggong Yan
Source :
Journal of Nanobiotechnology, Vol 22, Iss 1, Pp 1-16 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Radiotherapy-induced immune activation holds great promise for optimizing cancer treatment efficacy. Here, we describe a clinically used radiosensitizer hafnium oxide (HfO2) that was core coated with a MnO2 shell followed by a glucose oxidase (GOx) doping nanoplatform (HfO2@MnO2@GOx, HMG) to trigger ferroptosis adjuvant effects by glutathione depletion and reactive oxygen species production. This ferroptosis cascade potentiation further sensitized radiotherapy by enhancing DNA damage in 4T1 breast cancer tumor cells. The combination of HMG nanoparticles and radiotherapy effectively activated the damaged DNA and Mn2+-mediated cGAS-STING immune pathway in vitro and in vivo. This process had significant inhibitory effects on cancer progression and initiating an anticancer systemic immune response to prevent distant tumor recurrence and achieve long-lasting tumor suppression of both primary and distant tumors. Furthermore, the as-prepared HMG nanoparticles “turned on” spectral computed tomography (CT)/magnetic resonance dual-modality imaging signals, and demonstrated favorable contrast enhancement capabilities activated by under the GSH tumor microenvironment. This result highlighted the potential of nanoparticles as a theranostic nanoplatform for achieving molecular imaging guided tumor radiotherapy sensitization induced by synergistic immunotherapy.

Details

Language :
English
ISSN :
14773155
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Nanobiotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.f4df5d0cab2a413183755fd66afba74d
Document Type :
article
Full Text :
https://doi.org/10.1186/s12951-024-02502-8