Back to Search Start Over

Effect of Fractal Ceramic Structure on Mechanical Properties of Alumina Ceramic–Aluminum Composites

Authors :
Xianjun Zeng
Qiang Jing
Jianwei Sun
Jinyong Zhang
Source :
Materials, Vol 16, Iss 6, p 2296 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

In conventional ceramic–metal matrix composites, with the addition of the ceramic phase, although it can significantly improve the performance of the material in one aspect, it tends to weaken some of the excellent properties of the metal matrix as well. In order to meet the high toughness and high strength requirements of composites for practical production applications, researchers have searched for possible reinforcing structures from nature. They found that fractal structures, which are widely found in nature, have the potential to improve the mechanical properties of materials. However, it is often not feasible to manufacture these geometric structures using conventional processes. In this study, alumina ceramic fractal structures were prepared by 3D printing technology, and aluminum composites containing fractal ceramic structures were fabricated by spark plasma sintering technology. We have studied the effect of the fractal structure of alumina ceramics on the mechanical properties of composites. The compression strength of samples was measured by a universal testing machine and the torsional properties of samples were measured by a torsional modulus meter. The results show that a fractal structure improves the compressive strength of aluminum/alumina ceramic composites by 10.97% and the torsional properties by 17.45%. The results of the study will provide a new method for improving the mechanical properties of materials.

Details

Language :
English
ISSN :
19961944
Volume :
16
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.f553a2e30a2646a991579ad5142b13e6
Document Type :
article
Full Text :
https://doi.org/10.3390/ma16062296