Back to Search Start Over

In-situ directed energy deposition of Al based low density steel for automotive applications

Authors :
Matěj Rott
Ying Li
Martina Koukolíková
Martina Šípová
Pavel Salvetr
Zbyšek Nový
Gerhard Wolf
Jan Džugan
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-9 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract This work deals with the fabrication of one low density steel by mixing AISI S2 tool steel and AlSi10Mg powders using powder-based directed energy deposition (P-DED) technique. Two approaches of mixing powders were compared-continuous mixing during the process (in-situ) and mixing the powder prior to the process (premixed). The P-DED sample was characterised by a variety of techniques such as optical microscopy, scanning electron microscopy, electron backscatter diffraction, X-ray diffraction, and hardness measurement. Our findings demonstrate the successful achievement of steel with a 8 wt. % AlSi10Mg addition when two dissimilar powders are premixed, resulting in approximately 12% reduction in the density of S2 steel. Optimizing the powder feed rate and the ratio of AlSi10Mg powder contribute to an improvement of printability, eliminating materials separation, leading to a homogenous deposited part. Compared to the in-situ mixing case, the premixed process within the current process window generates a more homogeneous microstructure consisting of three phases: Ferrite, Fe3Al and Fe3AlC carbide. Whereas, the in-situ sample exhibits only two phases Ferrite and Fe3Al. The hardness of the premixed sample is found to be slightly higher compared to the in-situ sample.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.f58bfd426d2940949cd2ddb04c8959d6
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-49026-z