Back to Search Start Over

The Effect of Enzymolysis on Performance of Soy Protein-Based Adhesive

Authors :
Yantao Xu
Yecheng Xu
Yufei Han
Mingsong Chen
Wei Zhang
Qiang Gao
Jianzhang Li
Source :
Molecules, Vol 23, Iss 11, p 2752 (2018)
Publication Year :
2018
Publisher :
MDPI AG, 2018.

Abstract

In this study, bromelain was used to break soy protein molecules into polypeptide chains, and triglycidylamine (TGA) was added to develop a bio-adhesive. The viscosity, residual rate, functional groups, thermal behavior, and fracture surface of different adhesives were measured. A three-ply plywood was fabricated and evaluated. The results showed that using 0.1 wt% bromelain improved the soy protein isolate (SPI) content of the adhesive from 12 wt% to 18 wt%, with viscosity remaining constant, but reduced the residual rate by 9.6% and the wet shear strength of the resultant plywood by 69.8%. After the addition of 9 wt% TGA, the residual rate of the SPI/bromelain/TGA adhesive improved by 13.7%, and the wet shear strength of the resultant plywood increased by 681.3% relative to that of the SPI/bromelain adhesive. The wet shear strength was 30.2% higher than that of the SPI/TGA adhesive, which was attributed to the breakage of protein molecules into polypeptide chains. This occurrence led to (1) the formation of more interlocks with the wood surface during the curing process of the adhesive and (2) the exposure and reaction of more hydrophilic groups with TGA to produce a denser cross-linked network in the adhesive. This denser network exhibited enhanced thermal stability and created a ductile fracture surface after the enzymatic hydrolysis process.

Details

Language :
English
ISSN :
14203049
Volume :
23
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.f6438415b7ee4ede89459d3183b68262
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules23112752