Back to Search Start Over

Long Time CO2 Storage Under Ambient Conditions in Isolated Voids of a Porous Coordination Network Facilitated by the 'Magic Door' Mechanism

Authors :
Terumasa Shimada
Pavel M. Usov
Yuki Wada
Hiroyoshi Ohtsu
Taku Watanabe
Kiyohiro Adachi
Daisuke Hashizume
Takaya Matsumoto
Masaki Kawano
Source :
Advanced Science, Vol 11, Iss 2, Pp n/a-n/a (2024)
Publication Year :
2024
Publisher :
Wiley, 2024.

Abstract

Abstract A coordination network containing isolated pores without interconnecting channels is prepared from a tetrahedral ligand and copper(I) iodide. Despite the lack of accessibility, CO2 is selectively adsorbed into these pores at 298 K and then retained for more than one week while exposed to the atmosphere. The CO2 adsorption energy and diffusion mechanism throughout the network are simulated using Matlantis, which helps to rationalize the experimental results. CO2 enters the isolated voids through transient channels, termed “magic doors”, which can momentarily appear within the structure. Once inside the voids, CO2 remains locked in limiting its escape. This mechanism is facilitated by the flexibility of organic ligands and the pivot motion of cluster units. In situ powder X‐ray diffraction revealed that the crystal structure change is negligible before and after CO2 capture, unlike gate‐opening coordination networks. The uncovered CO2 sorption and retention ability paves the way for the design of sorbents based on isolated voids.

Details

Language :
English
ISSN :
21983844
Volume :
11
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.f664858d880d4107bcd1ac98ec88129c
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202307417