Back to Search Start Over

Transverse magnetic field on Jeffery–Hamel problem with Cu–water nanofluid between two non parallel plane walls by using collocation method

Authors :
I. Rahimi Petroudi
D.D. Ganji
M. Khazayi Nejad
J. Rahimi
E. Rahimi
A. Rahimifar
Source :
Case Studies in Thermal Engineering, Vol 4, Iss C, Pp 193-201 (2014)
Publication Year :
2014
Publisher :
Elsevier, 2014.

Abstract

An analysis has been performed to study the problem of magneto-hydrodynamic (MHD) Jeffery–Hamel flow with nanoparticles. The governing equations for this problem are reduced to an ordinary form and is solved using collocation method (CM) and numerically by fourth order Runge–Kutta technique. Also, Velocity fields have been computed and shown graphically for various values of physical parameters. The objective of the present work is to investigate the effect of the semi angles between the plates, Reynolds number, magnetic field strength and nanoparticles volume fraction on the velocity field. As an important outcome, Increasing Reynolds numbers leads to reduce velocity and excluded backflow in convergent channel.

Details

Language :
English
ISSN :
2214157X
Volume :
4
Issue :
C
Database :
Directory of Open Access Journals
Journal :
Case Studies in Thermal Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.f6b4df985e54a3e868c6ac417df8867
Document Type :
article
Full Text :
https://doi.org/10.1016/j.csite.2014.10.002