Back to Search Start Over

The Biocontrol Root-Oomycete, Pythium Oligandrum, Triggers Grapevine Resistance and Shifts in the Transcriptome of the Trunk Pathogenic Fungus, Phaeomoniella Chlamydospora

Authors :
Amira Yacoub
Noel Magnin
Jonathan Gerbore
Rana Haidar
Emilie Bruez
Stéphane Compant
Rémy Guyoneaud
Patrice Rey
Source :
International Journal of Molecular Sciences, Vol 21, Iss 18, p 6876 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

The worldwide increase in grapevine trunk diseases, mainly esca, represents a major threat for vineyard sustainability. Biocontrol of a pioneer fungus of esca, Phaeomoniella chlamydospora, was investigated here by deciphering the tripartite interaction between this trunk-esca pathogen, grapevine and the biocontrol-oomycete, Pythium oligandrum. When P. oligandrum colonizes grapevine roots, it was observed that the wood necroses caused by P. chlamydospora were significantly reduced. Transcriptomic analyses of plant and fungus responses were performed to determine the molecular events occurring, with the aim to relate P.chlamydospora degradation of wood to gene expression modulation. Following P. oligandrum-root colonization, major transcriptomic changes occurred both, in the grapevine-defense system and in the P. chlamydospore-virulence factors. Grapevine-defense was enhanced in response to P. chlamydospora attacks, with P. oligandrum acting as a plant-systemic resistance inducer, promoting jasmonic/ethylene signaling pathways and grapevine priming. P. chlamydospora pathogenicity genes, such as those related to secondary metabolite biosynthesis, carbohydrate-active enzymes and transcription regulators, were also affected in their expression. Shifts in grapevine responses and key-fungal functions were associated with the reduction of P. chlamydospora wood necroses. This study provides evidence of wood fungal pathogen transcriptional changes induced by a root biocontrol agent, P. oligandrum, in which there is no contact between the two microorganisms.

Details

Language :
English
ISSN :
14220067 and 16616596
Volume :
21
Issue :
18
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.f6c342766fe47f9bb5e7292bf40fb43
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms21186876