Back to Search Start Over

Audio Query by Example Using Similarity Measures between Probability Density Functions of Features

Authors :
Marko Helén
Tuomas Virtanen
Source :
EURASIP Journal on Audio, Speech, and Music Processing, Vol 2010 (2010)
Publication Year :
2010
Publisher :
SpringerOpen, 2010.

Abstract

This paper proposes a query by example system for generic audio. We estimate the similarity of the example signal and the samples in the queried database by calculating the distance between the probability density functions (pdfs) of their frame-wise acoustic features. Since the features are continuous valued, we propose to model them using Gaussian mixture models (GMMs) or hidden Markov models (HMMs). The models parametrize each sample efficiently and retain sufficient information for similarity measurement. To measure the distance between the models, we apply a novel Euclidean distance, approximations of Kullback-Leibler divergence, and a cross-likelihood ratio test. The performance of the measures was tested in simulations where audio samples are automatically retrieved from a general audio database, based on the estimated similarity to a user-provided example. The simulations show that the distance between probability density functions is an accurate measure for similarity. Measures based on GMMs or HMMs are shown to produce better results than that of the existing methods based on simpler statistics or histograms of the features. A good performance with low computational cost is obtained with the proposed Euclidean distance.

Details

Language :
English
ISSN :
16874714 and 16874722
Volume :
2010
Database :
Directory of Open Access Journals
Journal :
EURASIP Journal on Audio, Speech, and Music Processing
Publication Type :
Academic Journal
Accession number :
edsdoj.f76acea4e52409598a094dcbc8c21c7
Document Type :
article
Full Text :
https://doi.org/10.1155/2010/179303