Back to Search Start Over

Analyzing evaluation methods for large language models in the medical field: a scoping review

Authors :
Junbok Lee
Sungkyung Park
Jaeyong Shin
Belong Cho
Source :
BMC Medical Informatics and Decision Making, Vol 24, Iss 1, Pp 1-11 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background Owing to the rapid growth in the popularity of Large Language Models (LLMs), various performance evaluation studies have been conducted to confirm their applicability in the medical field. However, there is still no clear framework for evaluating LLMs. Objective This study reviews studies on LLM evaluations in the medical field and analyzes the research methods used in these studies. It aims to provide a reference for future researchers designing LLM studies. Methods & materials We conducted a scoping review of three databases (PubMed, Embase, and MEDLINE) to identify LLM-related articles published between January 1, 2023, and September 30, 2023. We analyzed the types of methods, number of questions (queries), evaluators, repeat measurements, additional analysis methods, use of prompt engineering, and metrics other than accuracy. Results A total of 142 articles met the inclusion criteria. LLM evaluation was primarily categorized as either providing test examinations (n = 53, 37.3%) or being evaluated by a medical professional (n = 80, 56.3%), with some hybrid cases (n = 5, 3.5%) or a combination of the two (n = 4, 2.8%). Most studies had 100 or fewer questions (n = 18, 29.0%), 15 (24.2%) performed repeated measurements, 18 (29.0%) performed additional analyses, and 8 (12.9%) used prompt engineering. For medical assessment, most studies used 50 or fewer queries (n = 54, 64.3%), had two evaluators (n = 43, 48.3%), and 14 (14.7%) used prompt engineering. Conclusions More research is required regarding the application of LLMs in healthcare. Although previous studies have evaluated performance, future studies will likely focus on improving performance. A well-structured methodology is required for these studies to be conducted systematically.

Details

Language :
English
ISSN :
14726947
Volume :
24
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Medical Informatics and Decision Making
Publication Type :
Academic Journal
Accession number :
edsdoj.f779519175b464995d3c83bac9da465
Document Type :
article
Full Text :
https://doi.org/10.1186/s12911-024-02709-7