Back to Search Start Over

A Multimodal Multi‐Shank Fluorescence Neural Probe for Cell‐Type‐Specific Electrophysiology in Multiple Regions across a Neural Circuit

Authors :
Namsun Chou
Hyogeun Shin
Kanghwan Kim
Uikyu Chae
Minsu Jang
Ui‐Jin Jeong
Kyeong‐Seob Hwang
Bumjun Yi
Seung Eun Lee
Jiwan Woo
Yakdol Cho
Changhyuk Lee
Bradley J. Baker
Soo‐Jin Oh
Min‐Ho Nam
Nakwon Choi
Il‐Joo Cho
Source :
Advanced Science, Vol 9, Iss 2, Pp n/a-n/a (2022)
Publication Year :
2022
Publisher :
Wiley, 2022.

Abstract

Abstract Cell‐type‐specific, activity‐dependent electrophysiology can allow in‐depth analysis of functional connectivity inside complex neural circuits composed of various cell types. To date, optics‐based fluorescence recording devices enable monitoring cell‐type‐specific activities. However, the monitoring is typically limited to a single brain region, and the temporal resolution is significantly low. Herein, a multimodal multi‐shank fluorescence neural probe that allows cell‐type‐specific electrophysiology from multiple deep‐brain regions at a high spatiotemporal resolution is presented. A photodiode and an electrode‐array pair are monolithically integrated on each tip of a minimal‐form‐factor silicon device. Both fluorescence and electrical signals are successfully measured simultaneously in GCaMP6f expressing mice, and the cell type from sorted neural spikes is identified. The probe's capability of combined electro‐optical recordings for cell‐type‐specific electrophysiology at multiple brain regions within a neural circuit is demonstrated. The new experimental paradigm to enable the precise investigation of functional connectivity inside and across complex neural circuits composed of various cell types is expected.

Details

Language :
English
ISSN :
21983844
Volume :
9
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.f7afe3a1d7354d88aadcaf06b66c8ec3
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202103564