Back to Search Start Over

Why is real-world visual object recognition hard?

Authors :
Nicolas Pinto
David D Cox
James J DiCarlo
Source :
PLoS Computational Biology, Vol 4, Iss 1, p e27 (2008)
Publication Year :
2008
Publisher :
Public Library of Science (PLoS), 2008.

Abstract

Progress in understanding the brain mechanisms underlying vision requires the construction of computational models that not only emulate the brain's anatomy and physiology, but ultimately match its performance on visual tasks. In recent years, "natural" images have become popular in the study of vision and have been used to show apparently impressive progress in building such models. Here, we challenge the use of uncontrolled "natural" images in guiding that progress. In particular, we show that a simple V1-like model--a neuroscientist's "null" model, which should perform poorly at real-world visual object recognition tasks--outperforms state-of-the-art object recognition systems (biologically inspired and otherwise) on a standard, ostensibly natural image recognition test. As a counterpoint, we designed a "simpler" recognition test to better span the real-world variation in object pose, position, and scale, and we show that this test correctly exposes the inadequacy of the V1-like model. Taken together, these results demonstrate that tests based on uncontrolled natural images can be seriously misleading, potentially guiding progress in the wrong direction. Instead, we reexamine what it means for images to be natural and argue for a renewed focus on the core problem of object recognition--real-world image variation.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
1553734X and 15537358
Volume :
4
Issue :
1
Database :
Directory of Open Access Journals
Journal :
PLoS Computational Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.f86d5f7141c943bca26752402f16ecb8
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pcbi.0040027