Back to Search
Start Over
Receptor-specific Ca2+ oscillation patterns mediated by differential regulation of P2Y purinergic receptors in rat hepatocytes
- Source :
- iScience, Vol 24, Iss 10, Pp 103139- (2021)
- Publication Year :
- 2021
- Publisher :
- Elsevier, 2021.
-
Abstract
- Summary: Extracellular agonists linked to inositol-1,4,5-trisphosphate (IP3) formation elicit cytosolic Ca2+ oscillations in many cell types, but despite a common signaling pathway, distinct agonist-specific Ca2+ spike patterns are observed. Using qPCR, we show that rat hepatocytes express multiple purinergic P2Y and P2X receptors (R). ADP acting through P2Y1R elicits narrow Ca2+ oscillations, whereas UTP acting through P2Y2R elicits broad Ca2+ oscillations, with composite patterns observed for ATP. P2XRs do not play a role at physiological agonist levels. The discrete Ca2+ signatures reflect differential effects of protein kinase C (PKC), which selectively modifies the falling phase of the Ca2+ spikes. Negative feedback by PKC limits the duration of P2Y1R-induced Ca2+ spikes in a manner that requires extracellular Ca2+. By contrast, P2Y2R is resistant to PKC negative feedback. Thus, the PKC leg of the bifurcated IP3 signaling pathway shapes unique Ca2+ oscillation patterns that allows for distinct cellular responses to different agonists.
Details
- Language :
- English
- ISSN :
- 25890042
- Volume :
- 24
- Issue :
- 10
- Database :
- Directory of Open Access Journals
- Journal :
- iScience
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.f883fb2f314a749c6a1a22f4d13dea
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.isci.2021.103139