Back to Search Start Over

Genome-wide analysis of MYB transcription factors of Vaccinium corymbosum and their positive responses to drought stress

Authors :
Aibin Wang
Kehao Liang
Shiwen Yang
Yibo Cao
Lei Wang
Ming Zhang
Jing Zhou
Lingyun Zhang
Source :
BMC Genomics, Vol 22, Iss 1, Pp 1-17 (2021)
Publication Year :
2021
Publisher :
BMC, 2021.

Abstract

Abstract Background Blueberry (Vaccinium corymbosum L.) is an important species with a high content of flavonoids in fruits. As a perennial shrub, blueberry is characterized by shallow-rooted property and susceptible to drought stress. MYB transcription factor was reported to be widely involved in plant response to abiotic stresses, however, the role of MYB family in blueberry responding to drought stress remains elusive. Results In this study, we conducted a comprehensive analysis of VcMYBs in blueberry based on the genome data under drought stress, including phylogenetic relationship, identification of differentially expressed genes (DEGs), expression profiling, conserved motifs, expression correlation and protein-protein interaction prediction, etc. The results showed that 229 non-redundant MYB sequences were identified in the blueberry genome, and divided into 23 subgroups. A total of 102 MYB DEGs with a significant response to drought stress were identified, of which 72 in leaves and 69 in roots, and 8 differential expression genes with a > 20-fold change in the level of expression. 17 DEGs had a higher expression correlation with other MYB members. The interaction partners of the key VcMYB proteins were predicted by STRING analysis and in combination with physiological and morphological observation. 10 key VcMYB genes such as VcMYB8, VcMYB102 and VcMYB228 were predicted to be probably involved in reactive oxygen species (ROS) pathway, and 7 key VcMYB genes (VcMYB41, VcMYB88 and VcMYB100, etc..) probably participated in leaf regulation under drought treatment. Conclusions Our studies provide a new understanding of the regulation mechanism of VcMYB family in blueberry response to drought stress, and lay fundamental support for future studies on blueberry grown in regions with limited water supply for this crop.

Details

Language :
English
ISSN :
14712164
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Genomics
Publication Type :
Academic Journal
Accession number :
edsdoj.f8c00c01c1b04edcb86380ef65e8dad4
Document Type :
article
Full Text :
https://doi.org/10.1186/s12864-021-07850-5