Back to Search
Start Over
Homotopy cartesian squares in extriangulated categories
- Source :
- Open Mathematics, Vol 21, Iss 1, Pp 119-221 (2023)
- Publication Year :
- 2023
- Publisher :
- De Gruyter, 2023.
-
Abstract
- Let (C,E,s)\left({\mathcal{C}},{\mathbb{E}},{\mathfrak{s}}) be an extriangulated category. Given a composition of two commutative squares in C{\mathcal{C}}, if two commutative squares are homotopy cartesian, then their composition is also a homotopy cartesian square. This covers the result by Mac Lane [Categories for the Working Mathematician, Second edition, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York, 1998] for abelian categories and by Christensen and Frankland [On good morphisms of exact triangles, J. Pure Appl. Algebra 226 (2022), no. 3, 106846] for triangulated categories.
Details
- Language :
- English
- ISSN :
- 23915455
- Volume :
- 21
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Open Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.f927eaf7abcd471f8cf943deb6d739d9
- Document Type :
- article
- Full Text :
- https://doi.org/10.1515/math-2022-0570