Back to Search
Start Over
Enhancing Permanence of Corrosion Inhibitors Within Acrylic Protective Coatings for Outdoor Bronze Using Green Nanocontainers
- Source :
- Molecules, Vol 29, Iss 23, p 5702 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- Outdoor bronze statues are constantly exposed to weather conditions and reactive compounds in the atmosphere that can interact with their surfaces. To avoid these interactions, a commonly used method is the application of coatings with corrosion inhibitors. However, a significant limitation of these inhibitors is their gradual loss over time. In this study, we aimed to improve the durability of 5-ethyl-1,3,4-thiadiazol-2-amine (AEDTA), the inhibitor chosen to formulate new acrylic coatings for outdoor bronzes. Methyl-β-cyclodextrin (Me-β-CD) was selected to host the inhibitor due to the capability of cyclodextrins to form complexes incorporating small organic molecules. The complexes of Me-β-CD and AEDTA were prepared and the inclusion of AEDTA was proved by Fourier-transform infrared spectroscopy, X-ray diffraction and nuclear magnetic resonance spectroscopy. Then, acrylic coatings were prepared at different concentrations of the Me-β-CD/AEDTA system. They were thermally aged and monitored every 24 h. To evaluate the volatilization of the corrosion inhibitor, solid phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS) and thermal desorption-GC/MS (TD-GC/MS) analyses were performed during the first 72 h. The results were compared to those of pure AEDTA films and Incralac®. The outcomes showed that Me-β-CD/AEDTA complexes are promising candidates for developing coatings with improved stability and longer retention of AEDTA.
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 29
- Issue :
- 23
- Database :
- Directory of Open Access Journals
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.f92b1af1197442f1b91fa4b4b0cabe5d
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/molecules29235702