Back to Search Start Over

Cross shard leader accountability protocol based on two phase atomic commit

Authors :
Zhiqiang Du
Wendong Zhang
Liangxin Liu
Yanfang Fu
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-17 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Sharding blockchain is a technology designed to improve the performance and scalability of traditional blockchain systems. However, due to its design, communication between shards depends on shard leaders for transmitting information, while shard members are unable to detect communication activities between shards. Consequently, Byzantine nodes can act as shard leaders, engaging in malicious behaviors to disrupt message transmission. To address these issues, we propose the Cross shard leader accountability protocol (CSLAP), which is based on the two-phase atomic commit protocol (2PC). CSLAP employs byzantine broadcast/byzantine agreement (BB/BA) for Byzantine fault tolerance to generate cross-shard leader re-election certificates, thereby reducing the impact of shard leaders on inter-shard communication. It also uses Round-robin mechanism to facilitate leader re-election. Moreover, we demonstrate that CSLAP maintains the security and liveness of sharding transactions while providing lower communication latency. Finally, we conducted an experimental comparison between CSLAP and other cross-shard protocols. The results indicate that CSLAP exhibits superior performance in reducing communication latency.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.f93b5fee6bd44bd8bca6db50a946267c
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-64945-1