Back to Search Start Over

Gene expression and alternative splicing dynamics are perturbed in female head transcriptomes following heterospecific copulation

Authors :
Fernando Diaz
Carson W. Allan
Therese Ann Markow
Jeremy M. Bono
Luciano M. Matzkin
Source :
BMC Genomics, Vol 22, Iss 1, Pp 1-13 (2021)
Publication Year :
2021
Publisher :
BMC, 2021.

Abstract

Abstract Background Despite the growing interest in the female side of copulatory interactions, the roles played by differential expression and alternative splicing mechanisms of pre-RNA on tissues outside of the reproductive tract have remained largely unknown. Here we addressed these questions in the context of con- vs heterospecific matings between Drosophila mojavensis and its sister species, D. arizonae. We analyzed transcriptional responses in female heads using an integrated investigation of genome-wide patterns of gene expression, including differential expression (DE), alternative splicing (AS) and intron retention (IR). Results Our results indicated that early transcriptional responses were largely congruent between con- and heterospecific matings but are substantially perturbed over time. Conspecific matings induced functional pathways related to amino acid balance previously associated with the brain’s physiology and female postmating behavior. Heterospecific matings often failed to activate regulation of some of these genes and induced expression of additional genes when compared with those of conspecifically-mated females. These mechanisms showed functional specializations with DE genes mostly linked to pathways of proteolysis and nutrient homeostasis, while AS genes were more related to photoreception and muscle assembly pathways. IR seems to play a more general role in DE regulation during the female postmating response. Conclusions We provide evidence showing that AS genes substantially perturbed by heterospecific matings in female heads evolve at slower evolutionary rates than the genome background. However, DE genes evolve at evolutionary rates similar, or even higher, than those of male reproductive genes, which highlights their potential role in sexual selection and the evolution of reproductive barriers.

Details

Language :
English
ISSN :
14712164
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Genomics
Publication Type :
Academic Journal
Accession number :
edsdoj.fa869ea6f14945038c325d69ab501c69
Document Type :
article
Full Text :
https://doi.org/10.1186/s12864-021-07669-0